Minimal intersection of curves on surfaces
نویسنده
چکیده
This paper is a consequence of the close connection between combinatorial group theory and the topology of surfaces. In the eighties Goldman discovered a Lie algebra structure on the vector space generated by the free homotopy classes of oriented curves on an oriented surface. The Lie bracket [a,b] is defined as the sum over the intersection points of a pair of transversal representatives of the conjugacy classes a and b of loop product of at the intersection point, with a negative sign if the orientation determined by ordered tangents at the intersection point is not the orientation of the surface. If one of the classes has a simple representative we give a combinatorial group theory description of the terms of the Lie bracket and prove that this bracket has as many terms, counted with multiplicity, as the minimal number of intersection points of a and b. In other words the bracket with a simple element has no cancellation and determines minimal intersection numbers. We show that analogous results hold for the Lie bracket (also discovered by Goldman) of unoriented curves. We give three applications: a factorization of Thurston’s map defining the boundary of Teichmüller space, various decompositions of the underlying vector space of conjugacy classes into ad invariant subspaces and a connection between bijections of the set of conjugacy classes of curves on a surface preserving the Goldman bracket and the mapping class group. 2000Mathematics Subject Classification. Primary: 57M99, 20E06.
منابع مشابه
On the Arithmetic Self-intersection Number of the Dualizing Sheaf on Arithmetic Surfaces
We study the arithmetic self-intersection number of the dualizing sheaf on arithmetic surfaces with respect to morphisms of a particular kind. We obtain upper bounds for the arithmetic self-intersection number of the dualizing sheaf on minimal regular models of the modular curves associated with congruence subgroups Γ0(N) with square free level, as well as for the modular curves X(N) and the Fe...
متن کاملA Marching Method for Computing Intersection Curves of Two Subdivision Solids
This paper presents a marching method for computing intersection curves between two solids represented by subdivision surfaces of Catmull-Clark or Loop type. It can be used in trimming and boolean operations for subdivision surfaces. The main idea is to apply a marching method with geometric interpretation to trace the intersection curves. We first determine all intersecting regions, then find ...
متن کاملIntersections of two offset parametric surfaces based on topology analysis.
Conventional methods for solving intersections between two offset parametric surfaces often include iteratively using computationally expensive SSI (surface/surface intersections) algorithm. In addition, these methods ignore the relations between the intersection curves of parametric surfaces with different offset distances. The algorithm presented in this paper, makes full use of the topologic...
متن کاملOffsetting surface boundaries and 3-axis gouge-free surface machining
A key issue in the creation of error-free tool path for numerically controlled (NC) surface machining is gouging (over-cut> prevention. In the case of solid-based machining, where the creation of tool paths across several surfaces in a single pass is imperative, the major sources for gouging are the tangent discontinuity (C’ discontinuity) and the surface gap (Co discontinuity) occurred in the ...
متن کاملApplications of fast triangulation simplification
We describe a new algorithm to compute the geometric intersection number between two curves, given as edge vectors on an ideal triangulation. Most importantly, this algorithm runs in polynomial time in the bit-size of the two edge vectors. In its simplest instances, this algorithm works by finding the minimal position of the two curves. We achieve this by phrasing the problem as a collection of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008